The rank-generating functions of upho posets

نویسندگان

چکیده

Upper homogeneous finite type (upho) posets are a large class of partially ordered sets with the property that principal order filter at every vertex is isomorphic to whole poset. Well-known examples include k-ary trees, grid graphs, and Stern Very little known about upho in general. In this paper, we construct Schur-positive Ehrenborg quasisymmetric functions, whose rank-generating functions have rational poles zeros. We also categorize all planar posets. Finally, prove existence an poset uncomputable function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On composition of generating functions

In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...

متن کامل

Posets of Finite Functions

The symmetric group S(n) is partially ordered by Bruhat order. This order is extended by L. Renner to the set of partial injective functions of {1, 2, . . . , n} (see, Linear Algebraic Monoids, Springer, 2005). This poset is investigated by M. Fortin in his paper The MacNeille Completion of the Poset of Partial Injective Functions [Electron. J. Combin., 15, R62, 2008]. In this paper we show tha...

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

Generating linear extensions of posets by transpositions

This paper considers the problem of listing all linear extensions of a partial order so that successive extensions diier by the transposition of a single pair of elements. A necessary condition is given for the case when the partial order is a forest. A necessary and suucient condition is given for the case where the partial order consists of disjoint chains. Some open problems are mentioned.

متن کامل

Probability Generating Functions for Sattolo’s Algorithm

In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. Recently, H. Prodinger analysed two important random variables associated with the algorithm, and found their mean and variance. H. Mahmoud extended Prodinger’s analysis by finding limit laws for the same two random variables.The present article, starting from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2022

ISSN: ['1872-681X', '0012-365X']

DOI: https://doi.org/10.1016/j.disc.2021.112629